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Stokes parameters as a Minkowskian four-vector
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It is noted that the Jones-matrix formalism for polarization optics is a six-parameter two-by-two represen-
tation of the Lorentz group. It is shown that the four independent Stokes parameters form a Minkowskian
four-vector, just like the energy-momentum four-vector in special relativity. The optical filters are represented
by four-by-four Lorentz-transformation matrices. This four-by-four formalism can deal with partial coherence
described by the Stokes parameters. A four-by-four matrix formulation is given for decoherence effects on the
Stokes parameters, and a possible experiment is proposed. It is shown also that this Lorentz-group formalism
leads to optical filters with a symmetry property corresponding to that of two-dimensional Euclidean transfor-
mations.@S1063-651X~97!12210-3#
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I. INTRODUCTION

There are two standard mathematical devices in polar
tion optics. One is the Jones-matrix formalism@1#, and the
other is the set of four Stokes parameters@2,3#. They are
well-established languages in optics. In our earlier pap
@4,5#, we have shown that the two-by-two Jones-matrix f
malism is basically a two-by-two representation of the s
parameter Lorentz group, and the Jones vector is like
two-component spinor. This formalism allows us to use
the convenient theorems in the Lorentz group and allows
also to use optical polarizers as analog computers for
Lorentz group used in other branches of physics.

It is often more convenient to use the set of four numb
called the Stokes parameters. Then it is natural to write do
four-by-four matrices for optical filters. The purpose of th
paper is to study the parameters and the four-by-four ma
ces as entities in the Lorentz group. We shall show that
Stokes parameters can be grouped into a Minkowskian f
vector and the four-by-four matrices are like Loren
transformation matrices applicable to the four-dimensio
space-time.

Unlike the Jones vector, the Stokes parameters can
with the degree of coherence between two orthogonal po
ization axes. In the language of the two-by-two coheren
matrix @6#, the lack of coherence appears as a decrease in
magnitude of the off-diagonal elements. We shall study t
decoherence effect in detail and propose an experimen
test a Lorentz effect which is mathematically equivalent
the Thomas effect in atomic spectra.

For this purpose, we start with the Stokes parameters f
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purely coherent case. We then study the modification nee
to deal with partially coherent polarized waves. For t
purely coherent case, it is possible to construct a set of
Stokes parameters from the Jones vectors. This proce
like constructing a four-vector from a pair of spinors. It
also possible to construct four-by-four filter matrices fro
the two-by-two Jones matrices. Thus the four-by-four ma
ces applicable to the four Stokes parameters form ano
representation of the six-parameter Lorentz group.

It is a simple matter to write down the Stokes paramet
for reduced coherence. If this reduced coherence is
served, the filter matrices are still the four-by-four matric
represented by the six-parameter Lorentz group. Howeve
the optical filters reduce coherence, this creates an ent
new problem. In order to deal with this case, we introduc
four-by-four ‘‘decoherence’’ matrix.

This matrix is not a member of the Lorentz group, a
creates an additional matrix algebra. Fortunately, the fo
by-four decoherence matrix can be reduced to two two-
two matrices. One of them squeezes the first and the fo
Stokes parameters, and the other two-by-two matrix p
forms a two-dimensional symplectic transformation on t
second and third Stokes parameters. This is quite like a L
entz transformation in one timelike dimension and tw
spacelike. Thus two repeated decoherence matrices can
duce a Lorentz effect similar to the Thomas effect obser
in atomic spectra. This is an observable effect.

In this paper we combine various existing mathemati
devices for polarization optics into a single formalism bas
on the Lorentz group. Since the Lorentz group has vari
subgroups, other than those input subgroups, this comb
formalism can generate interesting filter combinations wh
can perform the algebraic operations of those subgroups
addition, the combined formalism produces a set of matri
which enables us to study decoherence effects system
cally.
6065 © 1997 The American Physical Society
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In Sec. II we construct the two-by-two Jones-matrix fo
malism and the Stokes parameters starting from a polar
light wave. Section III summarizes our earlier papers on
Jones-matrix formalism as a representation of the Lore
group. In Sec. IV, we show that the Stokes parameters
transformed as a Minkowskian four-vector through coh
ence preserving filters.

In Sec. V we show how a Minkowskian four-vector
constructed from two spinors. It is noted that there are t
different sets of spinors for the case of the Lorentz gro
and this distinction is responsible for the difference betwe
electrons and positrons. It is shown how the light wave a
its complex conjugate correspond to the electron and p
tron, respectively. In Sec. VI we compare the Jones vec
and the Stokes parameters, and explain why the four-ve
representation of the Stokes parameters contains more p
ics than the Jones-matrix formalism. It is noted in Sec.
that the Stokes four-vector can accommodate polari
waves with partial coherence. We present in this sectio
matrix formulation of decoherence effects, and derive a m
surable consequence.

In Sec. VIII we discuss physical implications of the pr
cedure outlined in this paper, using a concrete physical
ample. In Appendix A the Lorentz group is discussed
terms of Lorentz transformations applicable to the fo
dimensional Minkowskian space. The two-dimensional E
clidean group is used in our discussion of possible new
tical filters. We explain this group in terms of translatio
and rotations on a flat plane in Appendix B.

II. FORMULATION OF THE PROBLEM

In studying polarized light propagating along thez direc-
tion, the traditional approach is to consider thex andy com-
ponents of the electric fields. Their amplitude ratio and
phase difference determine the degree of polarization. T
we can change the polarization either by adjusting the
plitudes, by changing the relative phases, or both. For c
venience, we call the optical device which changes am
tudes an ‘‘attenuator’’ and the device which changes
relative phase a ‘‘phase shifter.’’

Let us write these electric fields as

S Ex

Ey
D 5S Aexp$ i ~kz2vt1f1!%

Bexp$ i ~kz2vt1f2!%
D , ~2.1!

whereA andB are the amplitudes which are real and po
tive numbers, andf1 andf2 are the phases of thex andy
components, respectively. This column matrix is called
Jones vector. The content of polarization is determined
the ratio

Ey

Ex
5S B

ADei ~f22f1!, ~2.2!

which can be written as one complex number:

w5reif, ~2.3!

with
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The degree of polarization is measured by these two
numbers, which are the amplitude ratio and the phase dif
ence, respectively. The transformation takes place when
light beam goes through an optical filter whose transmiss
properties are not isotropic.

In dealing with light waves, we have to realize that t
intensity is the quantity we measure. Then there arises
question of coherence and time average. We are thus le
consider the following parameters:

S115^Ex* Ex&, S225^Ey* Ey&,

S125^Ex* Ey&, S215^Ey* Ex&. ~2.4!

Then, we are naturally invited to write down the two-by-tw
matrix:

C5S ^Ex* Ex& ^Ey* Ex&

^Ex* Ey& ^Ey* Ey&
D , ~2.5!

where^Ei* Ej& is the time average ofEi* Ej . The above form
is called the coherency matrix@6#.

It is sometimes more convenient to use the followi
combinations of parameters:

S05S111S22,

S15S112S22,

S25S121S21,

S352 i ~S122S21!. ~2.6!

These four parameters are called the Stokes parameters i
literature@2,3#.

The purpose of the present paper is to show that th
four parameters form a Minkowskian four-vector when t
light wave goes through optical filters. Once the four Stok
parameters are introduced, it is quite natural to constru
four-dimensional vector and transformation matrices ap
cable to this vector. These four-by-four matrices are cal
Mueller matrices@2#. In this paper we shall therefore sho
that the Mueller matrices are like four-by-four Lorent
transformation matrices.

Stokes was an active researcher during the 19th cen
@2#. The mathematics of the Stokes parameters is a very
science, and there are many interesting mathematical
vices. For instance, we can define a three-dimensional C
tesian coordinate system spanned byS1, S2, S3. We can then
consider a sphere whose maximum radius isS0. This is
called the Poincare´ sphere and is the standard geometri
language for the Stokes parameters@6#. We shall use the
geometry of this sphere in Secs. VI and VII of this paper

III. JONES-MATRIX FORMALISM

We presented in our earlier paper@4# the Jones-matrix
formalism as a representation of the Lorentz group. We u
there the concept of squeeze transformations to describ
tenuation filters. Let us summarize in this section t
Lorentz-group content of this formalism which will be usef
for discussing the Stokes parameters.

There are two transverse directions which are perpend
lar to each other. The absorption coefficient in one transve
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56 6067STOKES PARAMETERS AS A MINKOWSKIAN FOUR-VECTOR
direction could be different from the coefficient along t
other direction. Thus there is the ‘‘polarization’’ coordina
in which the absorption can be described by

S e2h1 0

0 e2h2
D 5e2~h11h2!/2S eh/2 0

0 e2h/2D , ~3.1!

with h5h22h1. This attenuation matrix tells us that th
electric fields are attenuated at two different rates. The ex
nential factore2(h11h2)/2 reduces both components at th
same rate and does not affect the degree of polarization.
effect of polarization is solely determined by the attenuat
matrix

A~0,h!5S eh/2 0

0 e2h/2D . ~3.2!

This type of mathematical operation is quite familiar to
from squeezed states of light and from Lorentz boosts
spinors. We call the above matrix the ‘‘attenuator.’’

Another basic element is the optical filter with differe
values of the index of refraction along the two orthogon
directions. The effect of this filter can be written as

S eid1 0

0 eid2
D 5e2 i ~d11d2!/2S e2 id/2 0

0 eid/2D , ~3.3!
ic
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with d5d22d1 . In measurement processes, the ove
phase factore2 i (d11d2)/2 cannot be detected, and can ther
fore be deleted. The polarization effect of the filter is sole
determined by the matrix

P~0,d!5S e2 id/2 0

0 eid/2D . ~3.4!

This form was noted as one of the basic components of
Jones-matrix formalism in Sec. II. This phase-shifter mat
appears like a rotation matrix around thez axis in the theory
of rotation groups, but it plays a different role in this pap
We shall hereafter call this matrix a phase shifter.

The polarization axes are not always thex andy axes. For
this reason, we need the rotation matrix

R~u!5S cos~u/2! 2sin~u/2!

sin~u/2! cos~u/2!
D . ~3.5!

If the polarization coordinate is rotated by an angleu/2, the
attenuator and phase-shifter of Eq.~3.2! and Eq.~3.4!, re-
spectively, become
A~u,h!5R~u!A~0,h!R~2u!5S eh/2cos2~u/2!1e2h/2sin2~u/2! ~eh/22e2h/2!cos~u/2!sin~u/2!

~eh/22e2h/2!cos~u/2!sin~u/2! e2h/2cos2~u/2!1eh/2sin2~u/2!
D , ~3.6!

and

P~u,d!5R~u!P~0,d!R~2u!5S e2 id/2cos2~u/2!1eid/2sin2~u/2! ~e2 id/22eid/2!cos~u/2!sin~u/2!

~e2 id/22eid/2!cos~u/2!sin~u/2! eid/2cos2~u/2!1e2 id/2sin2~u/2!
D . ~3.7!
ve
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The Jones-matrix formalism consists of repeated appl
tions of the three basic operations. In order to study t
more systematically, let us use the generators of these tr
formations. First, the rotation matrix of Eq.~3.5! takes the
form

R~u!5exp~2 iuJ2!, ~3.8!

with

J25
1

2S 0 2 i

i 0 D . ~3.9!

The attenuation operator of Eq.~3.2! can also be written in
the exponential form:

A~0,h!5exp~2 ihK3!, ~3.10!

with

K35
i

2S 1 0

0 21D .
a-
is
ns-

If we take the commutation relation between the abo
generators, we end up with another generator:

@J2 ,K3#5 iK 1 , ~3.11!

with

K15
i

2S 0 1

1 0D .

We are then led to write the commutation relations

@K3 ,K1#52 iJ2 , @K1 ,J2#5 iK 3 . ~3.12!

These three generators indeed form a closed set of com
tation relations. The three-parameter groups generated
this set of commutation relations are O~2,1!, Sp~2,r !, and
SU~1,1!. The group SU~1,1! has been extensively discusse
in the literature in connection with squeezed states of li
@7#. The group O~2,1! is the Lorentz group applicable to on
timelike dimension and two spacelike dimensions. The gro
Sp~2,r! is the basic symmetry group for the Wigner functio
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for one-mode squeezed states@7,8#. The relevance of this
group in polarization optics has also been noted in the lite
ture @4,9,10#.

The phase shifter of Eq.~3.4! can be written as

P~0,d!5exp~2 idJ3!, ~3.13!

with

J35
1

2S 1 0

0 21D . ~3.14!

If we take a commutation relation of this operator withJ2,

@J3 ,J2#5 iJ1 , ~3.15!

with

J15
1

2S 0 1

1 0D .

These three generators satisfy the commutation relations

@Ji ,Jj #5 i e i jkJk . ~3.16!

This set of commutation relations is very familiar to us. Th
generate the three-dimensional rotation group and the S~2!
group governing rotational symmetry of spin-1/2 particle
These are also three-parameter groups.

If we apply both attenuators and phase shifters in rand
order in laboratories, the corresponding mathematics is
combine the two three-parameter groups by mixing up th
commutation relations. The resulting closed set of commu
tion relations consists of@4#

@Ji ,K j #5 i e i jkKk , @Ki ,Jj #52 i e i jkJk , ~3.17!

in addition to the set given in Eq.~3.16!.
These are the six generators for the two-by-two repres

tation of the Lorentz group which is often called SL(2,c).
This group is the standard language in elementary par
physics dealing with spin-1/2 particles. In optics, the Lore
group gained its prominence recently in connection w
squeezed states of light@7#. It is quite natural for us to study
the two-by-two Jones matrices and four-by-four Mueller m
trices within the framework of the Lorentz group.

IV. TRANSFORMATION PROPERTIES
OF THE STOKES PARAMETERS

In order to study the effect of each filter, let us note th
the effect of the attenuator of Eq.~3.2! on the incoming light
of Eq. ~2.1! is

S eh/2Ex

e2h/2Ey
D . ~4.1!

The effect of the phase shifter of Eq.~3.4! on the incoming
light of Eq. ~2.1! is

S e2 id/2Ex

eid/2Ey
D . ~4.2!
-
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The effect of the rotation matrix of Eq.~3.5! on the incoming
light wave is

S @cos~u/2!#Ex2@sin~u/2!#Ey

@sin~u/2!#Ex1@cos~u/2!#Ey
D . ~4.3!

Under the rotation of Eq.~3.5! which transforms the in-
coming wave of Eq.~2.1! to Eq. ~4.3!, S11 andS22 become

cosu

2
~S112S22!2

sinu

2
~S121S21!1

1

2
~S111S22!,

~4.4!

and

2
cosu

2
~S112S22!1

sinu

2
~S121S21!1

1

2
~S111S22!,

~4.5!

respectively. It is clear from these expressions t
(S111S22) is invariant under this rotation. As for (S112S22),
the rotation leads to

cosu~S112S22!2sinu~S121S21!. ~4.6!

Under the same rotation,S12 andS21 become

sinu

2
~S112S22!1

cosu

2
~S121S21!1

1

2
~S122S21!,

~4.7!

and

sinu

2
~S112S22!1

cosu

2
~S121S21!2

1

2
~S122S21!,

~4.8!

respectively. Thus (S122S21) remains invariant, while
(S121S21) becomes

sinu~S112S22!1cosu~S121S21!. ~4.9!

We can thus write the effect of the rotation as

S cosu 2sinu

sinu cosu D S S112S22

S121S21
D . ~4.10!

Under the phase-shift transformation of Eq.~3.4! which
leads to Eq.~4.2!, S11 and S22 remain invariant, whileS12
andS21 becomeeidS12 ande2 idS21. The result is

S cosd 2sind

sind cosd D S S121S21

2 i ~S122S21!
D . ~4.11!

Under the squeeze transformation of Eq.~3.2! which leads to
Eq. ~4.1!, S11 and S22 becomeehS11 and e2hS22, respec-
tively, while S12 and S21 remain unchanged. This can b
translated into

S coshh sinhh

sinhh coshh D S S111S22

S112S22
D . ~4.12!
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Thus in terms of the Stokes parameters given in Eq.~2.6!,
we can write the above three transformations as

S 1 0 0 0

0 cosu 2sinu 0

0 sinu cosu 0

0 0 0 1

D S S0

S1

S2

S3

D , ~4.13!

S 1 0 0 0

0 1 0 0

0 0 cosd 2sind

0 0 sind cosd

D S S0

S1

S2

S3

D , ~4.14!

and

S coshh sinhh 0 0

sinhh coshh 0 0

0 0 1 0

0 0 0 1

D S S0

S1

S2

S3

D . ~4.15!

The above three matrices are generated byJ3, J1, andK1,
respectively, where

J35S 0 0 0 0

0 0 2 i 0

0 i 0 0

0 0 0 0

D , J15S 0 0 0 0

0 0 0 0

0 0 0 2 i

0 0 i 0

D ,

~4.16!

and

K15S 0 i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

D . ~4.17!

The commutation relation betweenJ3 and J1 leads to an-
other generatorJ2, with

J25S 0 0 0 0

0 0 0 i

0 0 0 0

0 2 i 0 0

D . ~4.18!

These three matrices generate the three-dimensional rot
group with the closed set of commutation relations.

@Ji ,Jj #5 i e i jkJk . ~4.19!

If we take commutation relations ofK1 with these rotation
generators, we end up with two additional generatorsK2 and
K3, where
ion

K25S 0 0 i 0

0 0 0 0

i 0 0 0

0 0 0 0

D , K35S 0 0 0 i

0 0 0 0

0 0 0 0

i 0 0 0

D .

~4.20!

These threeKi generators satisfy the commutation relatio

@Ki ,K j #52 i e i jkJk . ~4.21!

The right-hand side of the above expression is notKi but Ji .
Thus, in order to get a closed set of commutators, we hav
take commutation relations betweenJi andKi . The result is

@Ji ,K j #5 i e i jkKk . ~4.22!

Thus the six matrices consisting of threeJ and threeK ma-
trices form a closed set of a group of transformations ap
cable to four-dimensional space.

If the above transformation group is applied to the fou
dimensional space-time coordinate (t,z,x,y), it becomes the
group of Lorentz transformations in the Minkowskian spa
In deriving the above three sets of commutation relations,
have not used any of the principles of special relativity. T
commutation relations are derived strictly from the prop
ties of the optical filters. The Stokes parameters have noth
to do with special relativity. Yet, it is remarkable that the
can be formulated in terms of the mathematics of Lore
transformations.

V. SPINORS AND FOUR-VECTORS
IN THE LORENTZ GROUP

We are now confronted with the question of why th
Stokes parameters have to behave like a Minkowskian fo
vector. For this purpose, let us go back to Sec. III and c
sider repeated applications of the three basic operations.
shall see first whether the two-by-two matrix algebra of S
III can be represented as a representation of the
parameter Lorentz group. We shall then investigate whe
the four-by-four matrices of Sec. IV can be systematica
obtained from the Jones matrices.

For this purpose, let us start with the three Pauli s
matrices of the form

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D .

~5.1!

Then, the rotation generators

Ji5
1

2
s i ~5.2!

satisfy the closed set of commutation relations of Eq.~4.19!.
We can also construct three boost generators

Ki5
i

2
s i , ~5.3!

which satisfy the commutation relations given in Eq.~4.21!.
The Ki matrices alone do not form a closed set of comm
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tation relations, their commutation relations with the rotati
generators are given in Eq.~4.22!.

The six matricesJi andKi form a closed set of commu
tation relations, and they are like the generators of the L
entz group applicable to the~3 1 1!-dimensional Minkowski
space. The group generated by the above six matrice
called SL(2,c), consisting of all two-by-two complex matri
ces with unit determinant.

In order to construct four-vectors, we need two differe
spinor representations of the Lorentz group. Let us go to
commutation relations for the generators given in E
~4.19!, ~4.21!, and~4.22!. These commutators are not invar
ant under the sign change of the rotation generatorsJi , but
are invariant under the sign change of the squeeze gener
Ki . Thus, to each spinor representation, there is another
resentation with the squeeze generators with opposite s
This allows us to construct another representation with
generators:

J̇i5
1

2
s i , K̇ i5

2 i

2
s i . ~5.4!

We call this representation the ‘‘dotted’’ representation.
There are therefore two different sets of Lorentz transf

mation matrices. If we write the most general form of t
transformation matrix using undotted generators, it takes
form

L5expH 2
i

2 (
i 51

3

~u is i1 ih is i !J . ~5.5!

Then the transformation matrix in the dotted representa
becomes

L̇5expH 2
i

2 (
i 51

3

~u is i2 ih is i !J . ~5.6!

In both of the above matrices, the Hermitian conjugat
changes the direction of rotation. However, it does
change the direction of boosts. We can achieve this only
interchangingL to L̇, and we shall call this the ‘‘dot’’ con-
jugation.

Likewise, there are two different sets of spinors. Let
use u and v for the up and down spinors for ‘‘undotted
representation. Thenu̇ and v̇ are for the dotted representa
tion. The four-vectors are then constructed as@11#

uu̇52~x2 iy !, vv̇5~x1 iy !,

uv̇5~ t1z!, vu̇52~ t2z!. ~5.7!

The relation between the SL(2,c) spinors and the four-
vectors has been discussed in the literature@11–13#. It is
possible to construct the four-vector with the four SL(2,c)
spinors@12,14#. Indeed,

2uu̇5~1,i ,0,0!, vv̇5~1,2 i ,0,0!,

uv̇5~0,0,1,1!, vv̇15~0,0,1,21!. ~5.8!
r-

is
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e
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ors
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e
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e
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It is possible to construct a six-component Maxwell tens
by making combinations of two undotted and dotted spin
@12#. For massless particles, the only gauge-invariant co
ponents areuu andv̇ v̇ @15#. They correspond to the photon
in the Maxwell tensor representation with positive and ne
tive helicities, respectively. It is also possible to constru
Maxwell-tensor fields only for a massive particle, and obta
massless Maxwell fields by group contraction@16#

C5S uv̇ 2uu̇

vv̇ 2vu̇
D 5S u

v D ~ v̇2u̇!, ~5.9!

whereu and u̇ are one if the spin is up, and are zero if th
spin is down, whilev andv̇ are zero and one for the spin-u
and spin-down cases. The transformation matrix applica
to the column vector in the above expression is the two-
two matrix given in Eq.~5.5!. What is then the transforma
tion matrix applicable to the row vector (v̇, 2u̇) from the
right-hand side? It is the transpose of the matrix applicable
the column vector (v̇, 2u̇). We can obtain this column vec
tor from

S v̇

2u̇
D , ~5.10!

by applying to it the matrix

g52 is25S 0 21

1 0 D . ~5.11!

This matrix also has the property

gs ig
2152~s i !

T, ~5.12!

where the superscriptT means the transpose of the matri
The transformation matrix applicable to the column vector
Eq. ~5.10! is L̇ of Eq. ~5.6!. Thus the matrix applicable to th
row vector (v̇, 2u̇) in Eq. ~5.9! is

$g21L̇g%T5g21L̇Tg. ~5.13!

This is precisely the Hermitian conjugate ofL.
Let us now consider its transformation properties. T

matrix of Eq.~2.5! is like

C5S t1z x2 iy

x1 iy t2z D , ~5.14!

where the set of variables (x,y,z,t) is transformed like a
four-vector under Lorentz transformations. Furthermore, i
known that the Lorentz transformation of this four-vector
achieved through the formula

C85LCL†, ~5.15!

where the transformation matrixL is that of Eq.~5.5!. The
construction of four-vectors from the two-component spin
is not a trivial task@11,16#. The two-by-two representation o
Eq. ~5.14! requires one more step of complication.
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We are not the first ones to suspect that the cohere
matrix behaves like a four-vector. This was done by Bara
in 1963 @17#. However, Sec. V shows that we need two d
ferent two-by-two representations of the Lorentz group
establish the connection between the Jones vectors an
Stokes parameters in a covariant manner. The two diffe
spinors are the column vectors of (u,v) and (u̇,v̇).

This paper allows us to associate these spinors as

S u

v D 5S Ex

Ey
D , ~5.16!

and

S u̇

v̇
D 5S 2Ey*

Ex*
D . ~5.17!

The symmetry between the dotted and undotted represe
tions is responsible for the electron-positron symmetry in
Dirac equation@12#. It is interesting to note that this symme
try is applicable also to the polarization vectors of Eq.~5.16!
and Eq.~5.17!.

VI. JONES SPINORS AND STOKES VECTORS

The Jones vector is a two-component vector in the c
ventional formalism. Since, however, it is like a spinor in t
Lorentz group, we call it hereafter the Jones spinor. T
Jones spinor and the Stokes four-vector are two differ
representations of the same Lorentz group. Why do we c
struct two different representations? The difference is
physics.

Since the four-vector contains more elements than
two-component spinor, the Stokes vector should give m
information than the Jones spinor. This is translated into
invariance properties of Stokes parameters. As the fo
scalar (t22z22x22yz) is invariant under Lorentz transfor
mations, the quantity

S25S0
22S1

22S2
22S3

2 ~6.1!

remains invariant under filtering processes discussed in
paper. We shall hereafter call this quantity the ‘‘Stokes s
lar.’’ If the Stokes scalar is zero, the system is complet
coherent. This scalar quantity is positive if the system
partially coherent.

Indeed, this degree of coherence is what the Stokes ve
can tell while the Jones spinor cannot. If the filter syst
leaves the Stokes scalar invariant, it is a coheren
preserving system. This quantity is not preserved if the filt
cause random variations of phases. The best way to des
this degree of coherence is to construct a Poincare´ sphere in
the three-dimensional space ofS1 , S2, andS3. The radius of
this sphere is

R5~S1
21S2

21S3
2!1/2. ~6.2!

Then the ratioR/S0 gives the degree of coherence.
This radius takes the maximum valueS0 when the system

is completely coherent, and it takes the minimum value ofS1
when the system is completely incoherent. In this minim
cy
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case, bothS2 and S3 vanish. The question then is wheth
there is a four-by-four matrix which reduces these two co
ponents. If so, how can this matrix be augmented to the
of transformation matrices discussed in Sec. IV?

VII. DECOHERENCE MATRICES

Let us go back to the four-by-four representation of S
IV. For the Stokes four-vector, we can translate the two-
two attenuator Eq.~3.2! applicable to the Jones vector int
the four-by-four matrix

A~0,h!5S coshh sinhh 0 0

sinhh coshh 0 0

0 0 1 0

0 0 0 1

D . ~7.1!

Likewise, the phase shifter of Eq.~3.4! is translated into

P~0,d!5S 1 0 0 0

0 1 0 0

0 0 cosd 2sind

0 0 sind cosd

D . ~7.2!

The rotation matrix of Eq.~3.5! becomes

R~u!5S 1 0 0 0

0 cosu 2sinu 0

0 sinu cosu 0

0 0 0 1

D . ~7.3!

If the two transverse components lose coherence,
time-averaged valuesS12 and S21 become smaller. We can
therefore use the matrix

S 1 0 0 0

0 1 0 0

0 0 e22l 0

0 0 0 e22l

D , ~7.4!

which can also be written as

e2lS el 0 0 0

0 el 0 0

0 0 e2l 0

0 0 0 e2l

D , ~7.5!

where e2l is the overall decoherence factor. For conv
nience, we define the decoherence matrix as

D~l!5S el 0 0 0

0 el 0 0

0 0 e2l 0

0 0 0 e2l

D , ~7.6!

which is generated by



o
e
e
ro
y
u

m
f
q.
in
tri

to

o
na

ou
-

on
r

by
ply

o-
e

ons

ht.

rty
for-
di-

tion

ent
s
r-

ich

de-

6072 56D. HAN. Y. S. KIM, AND MARILYN E. NOZ
Q35S i 0 0 0

0 i 0 0

0 0 2 i 0

0 0 0 2 i

D . ~7.7!

The introduction of the above matrix into the existing set
six generators of the Lorentz group leads to the 15 param
group of O~3,3! or SL(4,r ) @18#, and this is beyond the scop
of the present paper. This, however, does not prevent us f
looking for an interesting subgroup which will play the ke
role in accommodating the decoherence matrix into the fo
by-four matrix formalism for the Stokes parameters.

It is interesting to see that this decoherence matrix co
mutes with the attenuator of Eq.~7.1! and the phase shifter o
Eq. ~7.2!, but it does not commute with the rotator of E
~7.3!. Thus the complication is reduced to the noncommut
algebra of this rotation matrix and the decoherence ma
As is given in Eq.~4.16!, the generator ofR(u) of Eq. ~7.3!
takes the form

J35S 0 0 0 0

0 0 2 i 0

0 i 0 0

0 0 0 0

D . ~7.8!

If we take the commutator of this matrix with the genera
of Q3,

@J3 ,Q3#52iW3 , ~7.9!

with

W35S 0 0 0 0

0 0 i 0

0 i 0 0

0 0 0 0

D . ~7.10!

In order to see the physics of these matrices, let us g
the Poincare´ sphere of this system. In the three-dimensio
space with the three Cartesian coordinate variableS1 , S2,
andS3, rotations around theS3 axis generated byJ3 do not
change the first and the last components of the Stokes f
vector (S0 ,S1 ,S2 ,S3). We can thus divide this four
component vector into two two-component vectors:

SA5S S0

S3
D , SB5S S1

S2
D . ~7.11!

The effect of the decoherence matrix onSA will be

S el 0

0 e2lD S S0

S3
D . ~7.12!

This is a squeeze transformation not affected by rotati
around theS3 axis. If we take into account the overall facto
mentioned after Eq.~7.5!, the effect of decoherence onSA is

S 1 0

0 e22lD S S0

S3
D , ~7.13!
f
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and this expression is invariant under rotations generated
J3. Under repeated applications, the matrix algebra is sim

S 1 0

0 e22rD S 1 0

0 e22lD S S0

S3
D . ~7.14!

The story is quite different forSB . Here we are dealing
with rotations and squeeze transformations in the tw
dimensional space ofS1 andS2. In order to take advantag
of the mathematics of squeezed states@7#, let us write
Q3 , W3 , J3 as

B15
1

2
Q3 , B25

1

2
W3 , L35

1

2
J3 . ~7.15!

These matrices form the closed set of commutation relati

@B1 ,B2#52 iL 3 , @B2 ,L3#5 iB3 , @L3 ,B1#5 iB2 ,

~7.16!

which are very familiar to us from the squeezed state of lig
They generate the group Sp~2! or SU~1,1!. This is by now a
standard mathematical tool in optics. The algebraic prope
of this group is the same as the group of Lorentz trans
mations in two spacelike dimensions and one timelike
mension. This group is routinely called O~2,1! in the litera-
ture, and the generators satisfy the same set of commuta
relations as the above set for Sp~2! @7#.

Thus the matrix algebra applicable to the two-compon
vector SB is the same as that for the Sp~2! squeezed state
and/or the (211)-dimensional Lorentz group. The decohe
ence along theS1 direction is

S el 0

0 e2lD . ~7.17!

The decoherence transformation along the direction wh
makes an angleu with the S1 axis is

S coshr1~sinhr!cos~2u! ~sinhr!sin~2u!

~sinhr!sin~2u! coshr2~sinhr!cos~2u!
D .

~7.18!

Thus the decoherence along theS1 direction followed by the
above transformation is

S coshr1~sinhr!cos~2u! ~sinhr!sin~2u!

~sinhr!sin~2u! coshr2~sinhr!cos~2u!
D

3S el 0

0 e2lD . ~7.19!

The computation of this matrix algebra leads to another
coherence matrix preceded by a rotation matrix

S coshj1~sinhj!cos~2a! ~sinhj!sin~2a!

~sinhj!sin~2a! coshj2~sinhj!cos~2a!
D

3S cosf 2sinf

sinf cosf D , ~7.20!



e
m

r

rix
a
ce
at
ilt

n

ica
o
s
u
is

ns
tio
.

ag
t

y
le

ax
hi
w

i
b
th

ou
el
ss
ne
ee
z

ned
th

by
are

up

b-
p.
In
e

lt

en-
t a

ke

As
ike
of

his
the

ge

this

rite

ri-

56 6073STOKES PARAMETERS AS A MINKOWSKIAN FOUR-VECTOR
where

coshj5~coshl!coshr1~sinhl!~sinhr!cosu,

tana5
~sinu!@sinhr1~ tanhl!~coshr21!cosu#

~sinhr!cosu1~ tanhl!11~coshr21!~cosu!2
,

tanf5
~ tanhr!~ tanl!sin2u

11~ tanhl!~ tanr!cos2u
. ~7.21!

The calculation leading to the above expression is w
known from the squeezed state and the Lorentz transfor
tion. The overall decoherence factors for Eq.~7.17! and Eq.
~7.18! aree2l, ande2r respectively. The overall factor fo
Eq. ~7.20! is e2j, and the net decoherence effect onSB is

e2jS coshj1~sinhj!cos~2a! ~sinhj!sin~2a!

~sinhj!sin~2a! coshj2~sinhj!cos~2a!
D

3S cosf 2sinf

sinf cosf D . ~7.22!

The nontrivial aspect of this calculation is the rotation mat
in the above expression. The decoherence followed by
other decoherence does not always result in a decoheren
is a decoherence preceded by a rotation. It is a simple m
to detect this rotation once the decoherence filters are bu
laboratories.

This effect of the Lorentz group has been discussed
connection with polarization optics@9,10#. In special relativ-
ity, this extra rotation is called the Thomas effect and ma
fests itself in the energy spectrum of the hydrogen atom@19#.

VIII. FURTHER PHYSICAL IMPLICATIONS

We have thus far reformulated the existing mathemat
devices for polarization optics in terms of the two-by-tw
and four-by-four representations of the Lorentz group. In
doing, we have achieved a unified group theoretical form
lation of polarization optics. The next question then
whether this new formulation will lead to new applicatio
or new experiments. This question is not unlike the ques
arising from Maxwell’s formulation of electromagnetism
After putting together various aspects of electricity and m
netism into a single mathematical formalism, we are led
the question of whether the formalism leads to a new ph
ics. In the case of Maxwell’s equations, the new physics
to wireless communication and electronic industry.

The result of this paper is not as far-reaching as in M
well’s case, but we are working within the same philosop
cal framework as the case of Maxwell’s equations. Yes,
have unified various aspects of polarization optics into
single group theoretical formalism. We are now interested
new conclusions which can be derived and which can
observed in laboratories. For this purpose, we note that
Lorentz group has interesting subgroups. The Lorentz gr
has six generators forming a closed set of commutation r
tions. We have already used this concept when we discu
a system consisting only of phase shifters, which is gover
by O~3! or the three-dimensional rotation group with thr
generators. The group O~3! is a subgroup of the Lorent
ll
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group. It was noted that the system of attenuators is gover
by the O~2,1! subgroups of the Lorentz group again wi
three generators.

We have achieved the full six-parameter Lorentz group
combining both the phase shifters and attenuators. We
then led to the question of whether this full Lorentz gro
has subgroups other than the input groups O~3! and O~2,1!.
As we discuss in Appendix A, there is an interesting su
group which is like the two-dimensional Euclidean grou
This is the product of our group theoretical formulation.
this section, we outline first the result of our effort on th
Jones-matrix formalism@5#. We shall then extend this resu
to the case of Stokes parameters.

The Lorentz group has three boost and three rotation g
erators. As we shall note in Appendix A, we can construc
set of generators consisting ofJ3, N1, andN2, with

N15J11K2 , N25J22K1 . ~8.1!

These generators satisfy the commutation relations

@J3 ,N1#5 iN2 , @J3 ,N2#52 iN1 , @N1 ,N2#50.
~8.2!

In the case of two-by-two Jones-matrix formalism, they ta
the form

N15S 0 1

0 0D , N25S 0 2 i

0 0 D . ~8.3!

They indeed form a closed set of commutation relations.
shown in Appendix B, these commutation relations are l
those for the two-dimensional Euclidean group consisting
two translations and one rotation around the origin. T
group has been studied extensively in connection with
space-time symmetries of massless particles, whereJ1 and
the two N generators correspond to the helicity and gau
degrees of freedom, respectively@20#.

However, this group is relatively new in optics@5,21#, and
we are tempted to construct an optical filter possessing
symmetry. The physics ofJ3 is well known through the
phase shifter given in Eq.~3.4!. If the angled is p/2, the
phase shifter becomes a quarter-wave shifter, which we w
as

Q5P~0,p/2!5S e2 ip/4 0

0 eip/4D . ~8.4!

Then J1 and K2 are the quarter-wave conjugates ofJ2 and
K1, respectively:

J15QJ2Q21, K252QK1Q21. ~8.5!

Consequently,

N15QN2Q21. ~8.6!

TheN generators lead to the following transformation mat
ces:
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T1~u!5exp~2 iuN1!5S 1 iu

0 1 D ,

T2~v !5exp~2 ivN2!5S 1 2v

0 1 D . ~8.7!

It is clear thatT1 is the quarter-wave conjugate ofT2. We
can now concentrate on the transformation matrixT2.

If T2 is applied to the incoming wave of Eq.~2.1!,

S 1 2v

0 1 D S Ex

Ey
D 5S Ex2vEy

Ey
D . ~8.8!

This new filter superposes they component of the electric
field to thex component with an appropriate constant, bu
leaves they component invariant.

Let us examine how this is achieved. The generatorN2
consists ofJ2, which generates rotations around thez axis,
andK1, which generates a squeeze along the 45° axis. Ph
cally, J2 generates optical activities. Thus the new filter co
sists of a suitable combination of these two operations
both cases, we have to take into account the overall atte
ation factor. This can be measured by the attenuation of thy
component which is not affected by the symmetry operat
of Eq. ~8.8!.

Is it possible to produce optical filters of this kind? Sta
ing from an optically active material, we can introduce
asymmetry in absorption to it by either mechanical or el
trical means. Another approach would be to pile up alt
nately theJ3-type andK2-type layers. In either case, it i
interesting to note that the combination of these two effe
produces a special effect predicted from the Lorentz gro

The group E~2!, although new in optics, has many inte
esting properties having to do with our daily life. One im
portant property is the conversion of multiplication into a
dition as the following matrix algebra indicates:

S 1 v1

0 1 D S 1 v2

0 1 D 5S 1 v11v2

0 1 D . ~8.9!

Since this group deals with rotations and translations o
plane, it has a great potential in navigational sciences. H
ever, we are here interested in what role this group play
the Stokes parameters.

In the Jones-matrix formalism, we used two-by-two m
trices for transformations. For the Stokes parameters,
have to use four-by-four matrices applicable to Stokes fo
vectors. The four-by-four generators of the Lorentz transf
mations are given in Sec. IV. They are discussed in m
detail in Appendix A. There, the generatorsN1 and N2 are
derived from the boost and rotation generators. From th
generators, we can construct transformation matrices:

T1~u!5exp~2 iuN1!5S 11u2/2 0 u 2u2/2

0 1 0 0

u 0 1 2u

u2/2 0 u 12u2/2

D ,
t
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T2~v !5exp~2 ivN2!5S 11v2/2 2v 0 2v2/2

2v 1 0 v

0 0 1 0

v2/2 2v 0 12v2/2

D .

~8.10!

These expressions are the four-by-four representation of
transformation matrices given in Eq.~8.7! for the Jones
spinors.

Unlike the Jones-matrix formalism, the Stokes parame
can describe partially coherent light waves. This is the rea
the above four-by-four expression is complicated. The
transformation matrices preserve coherence. If decohere
is introduced, we can apply the decoherence matrices
cussed in Sec. VII. It is interesting to note that the Loren
group formulation of polarization optics opens up this ki
of new possibilities in physics.

IX. CONCLUDING REMARKS

In this paper we have shown that both the Jones-ma
formalism and the Stokes parameters can be formulate
two different representations of the same Lorentz group. T
physics of the Stokes parameters can deal with the coher
between the two polarization directions. It is shown also t
the decoherence effect can also be formulated within
framework of the Lorentz group or in terms of the mathem
ics of squeezed states of light.

There have been in the past many laudable attempt
construct a mathematical representation for polarization
tics based on the Lorentz group@17,22,23#. However, the
Lorentz group, particularly its relevance to optics, was n
fully appreciated until it started playing the role of the u
derlying symmetry group for squeezed states of light@7,24–
26#. This naturally led to a new interest in possible applic
tions of the Lorentz group in other branches of opt
including polarization optics@9,10,23#.

From the group theoretical point of view, what is differe
in this paper is that we used in Sec. V an additional symm
try of the Lorentz group to understand fully the connecti
between the Jones matrix and the Stokes parameters.
additional symmetry was the one which connects electr
with positrons through charge conjugation. This opens a
search line which will connect symmetries of relativistic pa
ticles with polarization optics. We can attempt to understa
the symmetries of particle physics not from commutati
relations of group generators but from what we observe
optics laboratories.

It is true that we used group theory as the main carrier
our analysis. On the other hand, it is true also that we did
start our paper with commutation relations, but with what
observe in the real world. We concluded this paper with w
we can observe or we may possibly observe in the r
world.

APPENDIX A: SUBGROUPS OF THE LORENTZ GROUP

Let us consider the space-time coordinates (t,x,y,z),
analogous to the Stokes parameters (S0 ,S1 ,S2 ,S3). Then the



r

fy

e-

isf

oo
ion

ec

si

u-

the
y of
in the
.

ns
ean
en-
ere

the

on

q.

ti-
ts,
for-
s

par-
-

56 6075STOKES PARAMETERS AS A MINKOWSKIAN FOUR-VECTOR
rotation around thez axis is performed by the four-by-fou
matrix

S 1 0 0 0

0 cosu 2sinu 0

0 sinu cosu 0

0 0 0 1

D . ~A1!

This transformation is generated byJ3 of Eq. ~4.16!. The
generators of rotations around thex andy axes are also given
in Eq. ~4.16! and Eq.~4.18!. These three generators satis
the closed set of commutation relations

@Ji ,Jj #5 i e i jkJk . ~A2!

This set of commutation relations is for the thre
dimensional rotation group.

The Lorentz boost along thez axis takes the form

S coshh 0 0 sinhh

0 1 0 0

0 0 1 0

sinhh 0 0 coshh

D , ~A3!

which is generated byK3 of Eq. ~4.20!. Boosts along thex
andy axes are generated byK1 andK2 given in Eq.~4.17!
and Eq.~4.20!, respectively. These boost generators sat
the commutation relations

@Ji ,K j #5 i e i jkKk , @Ki ,K j #52 i e i jkJk . ~A4!

Indeed, the three rotation generators and the three b
generators satisfy the closed set of commutation relat
given in Eq.~A2! and Eq.~A4!. The four-by-four transfor-
mation matrices generated by these generators are dir
applicable to the space-time four-vector (t,x,y,z) and also to
the Stokes four-vector (S0 ,S1 ,S2 ,S3).

We can now construct a subset of the generators con
ing of J3 of Eq. ~4.16!, andN1 andN2 defined in Eq.~8.1!.
Thus the generatorsN1 andN2 take the form

N15S 0 0 i 0

0 0 0 0

i 0 0 2 i

0 0 i 0

D , N25S 0 2 i 0 0

2 i 0 0 i

0 0 0 0

0 2 i 0 0

D .

~A5!
,

y

st
s

tly

st-

These four-by-four matrices satisfy the closed set of comm
tation relations given in Eq.~8.2!.

The subgroup of the Lorentz group generated by
above matrices governs the internal space-time symmetr
massless particles, and has been extensively discussed
literature@11,12,15#. These expressions are new in optics

APPENDIX B: TWO-DIMENSIONAL EUCLIDEAN
TRANSFORMATIONS

In Sec. VIII, we discussed a set of commutation relatio
satisfied by the generators of the two-dimensional Euclid
group. The purpose of this Appendix is to construct the g
erators for the group of transformations on a flat plane. Th
are translations and rotations.

Let us consider here a two-dimensional plane and use
xy coordinate system. ThenLz defined as

Lz52 i H x
]

]y
2y

]

]xJ ~B1!

will generate rotations around the origin. The translati
generators are

Px52 i
]

]x
, Py52 i

]

]y
. ~B2!

These generators satisfy the commutation relations

@Lz ,Px#5 iPy , @Lz ,Py#52 iPx, @Px ,Py#50.
~B3!

These commutation relations are like those given in E
~8.2!. They become identical ifLz , Px, andPy are replaced
by J1, N2, andN3, respectively.

This group is not discussed often in physics, but is in
mately related to our daily life. When we drive on the stree
we make translations and rotations, and thus make trans
mations of this E~2! group. In addition, this group reproduce
the internal internal space-time symmetry of massless
ticles @27#. This aspect of the E~2! group has been exten
sively discussed in the literature@11,12,15,20#.
m
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