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Stokes parameters as a Minkowskian four-vector
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It is noted that the Jones-matrix formalism for polarization optics is a six-parameter two-by-two represen-
tation of the Lorentz group. It is shown that the four independent Stokes parameters form a Minkowskian
four-vector, just like the energy-momentum four-vector in special relativity. The optical filters are represented
by four-by-four Lorentz-transformation matrices. This four-by-four formalism can deal with partial coherence
described by the Stokes parameters. A four-by-four matrix formulation is given for decoherence effects on the
Stokes parameters, and a possible experiment is proposed. It is shown also that this Lorentz-group formalism
leads to optical filters with a symmetry property corresponding to that of two-dimensional Euclidean transfor-
mations.[S1063-651X97)12210-3

PACS numbeps): 42.79.Ci, 11.30.Cp, 42.45.Ja, 02.20.Qs

[. INTRODUCTION purely coherent case. We then study the modification needed
to deal with partially coherent polarized waves. For the
There are two standard mathematical devices in polarizgpurely coherent case, it is possible to construct a set of the
tion optics. One is the Jones-matrix formali$t], and the  Stokes parameters from the Jones vectors. This process is
other is the set of four Stokes parametg2s3]. They are like constructing a four-vector from a pair of spinors. It is
well-established languages in optics. In our earlier paperalso possible to construct four-by-four filter matrices from
[4,5], we have shown that the two-by-two Jones-matrix for-the two-by-two Jones matrices. Thus the four-by-four matri-
malism is basically a two-by-two representation of the six-ces applicable to the four Stokes parameters form another
parameter Lorentz group, and the Jones vector is like theepresentation of the six-parameter Lorentz group.
two-component spinor. This formalism allows us to use all It is a simple matter to write down the Stokes parameters
the convenient theorems in the Lorentz group and allows ufor reduced coherence. If this reduced coherence is pre-
also to use optical polarizers as analog computers for theerved, the filter matrices are still the four-by-four matrices
Lorentz group used in other branches of physics. represented by the six-parameter Lorentz group. However, if
It is often more convenient to use the set of four numbershe optical filters reduce coherence, this creates an entirely
called the Stokes parameters. Then it is natural to write downew problem. In order to deal with this case, we introduce a
four-by-four matrices for optical filters. The purpose of this four-by-four “decoherence” matrix.
paper is to study the parameters and the four-by-four matri- This matrix is not a member of the Lorentz group, and
ces as entities in the Lorentz group. We shall show that thereates an additional matrix algebra. Fortunately, the four-
Stokes parameters can be grouped into a Minkowskian fouty-four decoherence matrix can be reduced to two two-by-
vector and the four-by-four matrices are like Lorentz-two matrices. One of them squeezes the first and the fourth
transformation matrices applicable to the four-dimensionatokes parameters, and the other two-by-two matrix per-
space-time. forms a two-dimensional symplectic transformation on the
Unlike the Jones vector, the Stokes parameters can deaécond and third Stokes parameters. This is quite like a Lor-
with the degree of coherence between two orthogonal polaentz transformation in one timelike dimension and two
ization axes. In the language of the two-by-two coherencypacelike. Thus two repeated decoherence matrices can pro-
matrix[6], the lack of coherence appears as a decrease in thiice a Lorentz effect similar to the Thomas effect observed
magnitude of the off-diagonal elements. We shall study thisn atomic spectra. This is an observable effect.
decoherence effect in detail and propose an experiment to In this paper we combine various existing mathematical
test a Lorentz effect which is mathematically equivalent todevices for polarization optics into a single formalism based
the Thomas effect in atomic spectra. on the Lorentz group. Since the Lorentz group has various
For this purpose, we start with the Stokes parameters for aubgroups, other than those input subgroups, this combined
formalism can generate interesting filter combinations which
can perform the algebraic operations of those subgroups. In

*Electronic address: han@trmm.gsfc.nasa.gov addition, the combined formalism produces a set of matrices
"Electronic address: kim@umdhep.umd.edu which enables us to study decoherence effects systemati-
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In Sec. Il we construct the two-by-two Jones-matrix for- The degree of polarization is measured by these two real
malism and the Stokes parameters starting from a polarizedumbers, which are the amplitude ratio and the phase differ-
light wave. Section Ill summarizes our earlier papers on thence, respectively. The transformation takes place when the
Jones-matrix formalism as a representation of the Lorentlight beam goes through an optical filter whose transmission
group. In Sec. IV, we show that the Stokes parameters arproperties are not isotropic.
transformed as a Minkowskian four-vector through coher- In dealing with light waves, we have to realize that the
ence preserving filters. intensity is the quantity we measure. Then there arises the

In Sec. V we show how a Minkowskian four-vector is question of coherence and time average. We are thus led to
constructed from two spinors. It is noted that there are twaconsider the following parameters:
different sets of spinors for the case of the Lorentz group,

and this distinction is responsible for the difference between Su=(EXE0, S22:<E; Ey)
electrons and positrons. It is shown how the light wave and . .
its complex conjugate correspond to the electron and posi- S12=(EXEy), Sxu=(EyEx- 24

tron, respectively. In Sec. VI we compare the Jones vectorgpen we are naturally invited to write down the two-by-two
and the Stokes parameters, and explain why the four-vectQf,a¢rix:

representation of the Stokes parameters contains more phys-

ics than the Jones-matrix formalism. It is noted in Sec. VII (EXEx (EVEY
that the Stokes four-vector can accommodate polarized = EXE E*E
waves with partial coherence. We present in this section a (ExEy) (BB
matrix formulation of decoherence effects, and derive a Meayhere(E} E;) is the time average d& E; . The above form

surable consequence. S is called the coherency matrjg].
In Sec. VIIl we discuss physical implications of the pro- ¢ s sometimes more convenient to use the following
cedure outlined in this paper, using a concrete physical €Xsompinations of parameters:

ample. In Appendix A the Lorentz group is discussed in

: (2.5

terms of Lorentz transformations applicable to the four- So=S111 Sz,
dimensional Minkowskian space. The two-dimensional Eu-
clidean group is used in our discussion of possible new op- S1=S11~ S,

tical filters. We explain this group in terms of translations
and rotations on a flat plane in Appendix B.

S,=S1,+ Sy,
S3=— (S~ S0)- (2.6)

These four parameters are called the Stokes parameters in the
In studying polarized light propagating along thelirec- literature[2,3].
tion, the traditional approach is to consider thandy com- The purpose of the present paper is to show that these
ponents of the electric fields. Their amplitude ratio and thefour parameters form a Minkowskian four-vector when the
phase difference determine the degree of polarization. Thusght wave goes through optical filters. Once the four Stokes
we can change the polarization either by adjusting the amparameters are introduced, it is quite natural to construct a

plitudes, by changing the relative phases, or both. For confour-dimensional vector and transformation matrices appli-
relative phase a “phase shifter.” that the Mueller matrices are like four-by-four Lorentz-
(2.1) [2]. The mathematics of the Stokes parameters is a very old
Bexpi(kz— wt+ ¢5)}
whereA andB are the amplitudes which are real and POSI-\cian coordinate system spannedsyS,, S,. We can then
called the Poincarsphere and is the standard geometrical

venience, we call the optical device which changes amplicable to this vector. These four-by-four matrices are called
tudes an “attenuator” and the device which changes theMueller matriceq2]. In this paper we shall therefore show
Let us write these electric fields as transformation matrices.
(Ex (Aexp{i(kz— ot 4+ ¢1)}) Stokes was an active researcher during the 19th century
Ey B ' science, and there are many interesting mathematical de-
. vices. For instance, we can define a three-dimensional Car-
tive numbers, andb, and 2 are the phases O.f t_heandy consider a sphere whose maximum radiusSis This is
components, respectively. This column matrix is called the
Jones .vector. The content of polarization is determined b¥anguage for the Stokes parameté@d. We shall use the
the ratio , . .
geometry of this sphere in Secs. VI and VII of this paper.

I. FORMULATION OF THE PROBLEM

Ey - B (2~ 1)
E_x_ A e ) (2.2 11l. JONES-MATRIX FORMALISM

We presented in our earlier papet] the Jones-matrix
formalism as a representation of the Lorentz group. We used

w=re'?, (2.3)  there the concept of squeeze transformations to describe at-
tenuation filters. Let us summarize in this section the

with Lorentz-group content of this formalism which will be useful
for discussing the Stokes parameters.

There are two transverse directions which are perpendicu-
lar to each other. The absorption coefficient in one transverse

which can be written as one complex number:

B
r:K! ¢:¢2_¢1'
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direction could be different from the coefficient along thewith 6=45,—4; . In measurement processes, the overall

other direction. Thus there is the “polarization” coordinate phase factoe™'(°1*%)/2 cannot be detected, and can there-

in which the absorption can be described by fore be deleted. The polarization effect of the filter is solely
B 2 determined by the matrix

(e 71 0 7

0

—a (n1+m2)/2
e
0 e ”2> (

Ll B
e’ ) oo

with 7= 7,— 5,. This attenuation matrix tells us that the P(0-5):( 0 eia/z)- (3.4

electric fields are attenuated at two different rates. The expo-
nential factore™ (7% 722 reduces both components at the
same rate and does not affect the degree of polarization. ThHehis form was noted as one of the basic components of the
effect of polarization is solely determined by the attenuationJones-matrix formalism in Sec. Il. This phase-shifter matrix
matrix appears like a rotation matrix around thaxis in the theory
i of rotation groups, but it plays a different role in this paper.

e’ 0 We shall hereafter call this matrix a phase shifter.

0 e 72" The polarization axes are not always thandy axes. For
this reason, we need the rotation matrix
This type of mathematical operation is quite familiar to us
from squeezed states of light and from Lorentz boosts of
spinors. We call the above matrix the “attenuator.” cog0/2) —sin(6/2)

Another basic element is the optical filter with different R(6)= sin(6/2) cod6/2) | 3.9

values of the index of refraction along the two orthogonal
directions. The effect of this filter can be written as

ei o1 0
( 0 ei 8y

A(O,n)=( 3.2

If the polarization coordinate is rotated by an anglg, the
_0 3.3 attenuator and phase-shifter of E.2) and Eq.(3.4), re-
1812 ' spectively, become

—i6/2

— e i(61+ 802
) 0

~ ~ ( e”2cog(6/2)+e” "%sirt(012) (e”?—e” "?)coq 6/2)sin(6/2) )
A m=RIOAODRO=| nz_ o2y coq gr2)sin(012) e 72co(012) + e"2sir(612) ) (3.6
and
~ ~ ( e ' ¥2cog(012) +e'?sir?(012) (e 92— e'¥2)cod 0/2)sin( 0/2))
P(6,0)=R(O)P(0.HR(-6)= (e7 12— gl92)coq 6/2)sin(6/2) €' ¥2coS(6/2)+e 'sirt(6/2) ] @7

The Jones-matrix formalism consists of repeated applica- If we take the commutation relation between the above
tions of the three basic operations. In order to study thigenerators, we end up with another generator:
more systematically, let us use the generators of these trans-

formations. First, the rotation matrix of E¢3.5) takes the [J2,K3]=iKy, (3.11
form )
with
R(0)=exp(—i6d,), 3.8
(6)=exp( 2) (3.8 0 1
with Klzz 1 o
_E( 0 - ') 3.9 We are then led to write the commutation relations
272li o '
[K3,Ki]==1J2, [Ky,J2]=iK3. (3.12
The attenuation operator of E(3.2) can also be written in
the exponential form: These three generators indeed form a closed set of commu-
tation relations. The three-parameter groups generated by
A(0,7)=exp(—i7Kj3), (3.10  this set of commutation relations are(Z)), Sp2,r), and
_ SU(1,1). The group SWL,1) has been extensively discussed
with in the literature in connection with squeezed states of light

) [7]. The group @2,1) is the Lorentz group applicable to one
if1 0 timelike dimension and two spacelike dimensions. The group
0 -1/ Sp(2,r) is the basic symmetry group for the Wigner function
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for one-mode squeezed stafgs8]. The relevance of this The effect of the rotation matrix of E¢3.5) on the incoming
group in polarization optics has also been noted in the literalight wave is

ture[4,9,10. .
The phase shifter of Eq3.4) can be written as [cog 6/2) |E,—[sin(6/2) ]E, 3
. 4 . :
P(0,8) = exp(—i 61y), (313 [sin(6/2) |Ex+[cog 6/2) ]E,
ith Under the rotation of Eq(3.5 which transforms the in-
Wi coming wave of Eq(2.1) to Eq. (4.3, S;; andS,, become
J _1 1o (3.14 coy sing 1
72lo0 -1/ ' 7(511_522)_7(312+521)+ 5(3114'522),
If we take a commutation relation of this operator witf) .4
. and
[J3,d2]=1d4, (3.19
ith cosd sing 1
wit _7(511_322)"'7(512+521)+§(511+522)1
1/0 1 (4.9
‘]l:_ .
21 0 respectively. It is clear from these expressions that

(S11+ Syp) is invariant under this rotation. As foS{;— S,),

These three generators satisfy the commutation relations the rotation leads to

[ Jj]=T€ijcdic (3.19 COSH(Sy1— Sp2) — SINB(Syo+ Spa). 4.6

This set of commutation relations is very familiar to us. They
generate the three-dimensional rotation group and th@)SU
group governing rotational symmetry of spin-1/2 particles.

Under the same rotatiol®;, andS,; become

sing cosf 1
These are also three-parameter groups. ——(S11—S00) +—=—(S1+ So1) + = (S1— S,1),
If we apply both attenuators and phase shifters in random 2 2 2
order in laboratories, the corresponding mathematics is to (4.7
combine the two three-parameter groups by mixing up thei[,md
commutation relations. The resulting closed set of commuta-
tion relations consists d#] sing cos) 1
— (S~ 522)"‘7(312"‘521)_ 5(312_321),

[Ji . K]I=i€epKy, [KiJjl=—l€pde, (319 2 8

in addition to the set given in E¢3.16). ) _ ) ) )
These are the six generators for the two-by-two represerd€SPectively. Thus $,—S,) remains invariant, while

tation of the Lorentz group which is often called Slqp, (Sizt+Sz1) becomes

This group is the standard language in elementary particle :

physics dealing with spin-1/2 particles. In optics, the Lorentz SING(S11= S20) + COH(S1oF Sz0)- (4.9

group gained its prominence recently in connection with

squeezed states of lighf]. It is quite natural for us to study

the two-by-two Jones matrices and four-by-four Mueller ma- (cosﬁ _ sine)

We can thus write the effect of the rotation as

S1—Sx»
S+ S

Under the phase-shift transformation of E§.4) which
leads to Eq.(4.2), S;; and S,, remain invariant, whileS,,
In order to study the effect of each filter, let us note thatand S,; becomee'’S;, ande™'’S,;. The result is
the effect of the attenuator of E(B.2) on the incoming light

trices within the framework of the Lorentz group.

. (4.10

sind  coY

IV. TRANSFORMATION PROPERTIES
OF THE STOKES PARAMETERS

of Eq. (2.) is (0085 —siné) ( S12+ Sa1 413
o72E sind cos’ J\ —i(S,—S))° '
X
(e‘ ”’ZEy) ' 4D Under the squeeze transformation of E8}2) which leads to

Eqg. (4.1), S;; and S,, becomee”S,;; and e™ 7S,,, respec-
The effect of the phase shifter of E(.4) on the incoming tively, while S;, and S,; remain unchanged. This can be
light of Eqg. (2.1) is translated into

(e“‘s’zEx) (coshn sinhr;)
. 4.2

e'%E, sinhy  coshy

Si11t+S

. 4.1
Su—Sy “12
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Thus in terms of the Stokes parameters given in(Bd), 0Oi O 0O 0 0 i
we can write the above three transformations as ) 00 0 ) 00 0 0
1 0 0 0 /S Zli oo ol *lo o0 o0 of
0 co® -—sind 0||S 0 00O i 0 00 4o
0 sind cos® OS]’ .13 (420
0 o 0 1/ \'s, These thre&; generators satisfy the commutation relations
[Ki,KJ]:_iGiijk. (42])
1 0 O 0 Sy
01 o0 0 s The right-hand side of the above expression iskidbut J; .
_ 1 (4.14 Thus, in order to get a closed set of commutators, we have to
0 0 cog —sind|| S|’ take commutation relations betwegnandK; . The result is
0 0 si coss :
83 [Jiin]ZIEiijk' (422
and Thus the six matrices consisting of thréeand threeK ma-
trices form a closed set of a group of transformations appli-
coshy sinhy 0 0\ /S cable to four-dimensional space.
sinhy coshy 0 0| s, . If th(=T above trans.,formatlon'group is ap.phed to the four-
(4.15 dimensional space-time coordinatezx,y), it becomes the
0 0 1 0]|$ group of Lorentz transformations in the Minkowskian space.
0 0 0 1 \Ss, In deriving the above three sets of commutation relations, we

have not used any of the principles of special relativity. The
commutation relations are derived strictly from the proper-
ties of the optical filters. The Stokes parameters have nothing
to do with special relativity. Yet, it is remarkable that they
can be formulated in terms of the mathematics of Lorentz

The above three matrices are generated4y;, andK,
respectively, where

00 0 0 0000 transformations.
0 0 —-i O 0 0 0 O
= o ol 9%l o o0 o —il V. SPINORS AND FOUR-VECTORS
0 0o 0 0 0i o IN THE LORENTZ GROUP
(4.16 We are now confronted with the question of why the
Stokes parameters have to behave like a Minkowskian four-
and vector. For this purpose, let us go back to Sec. Ill and con-
sider repeated applications of the three basic operations. We
0O i 0 O shall see first whether the two-by-two matrix algebra of Sec.
. Il can be represented as a representation of the six-
Ky = 1000 (4.17) parameter Lorentz group. We shall then investigate whether
0 0 0 O the four-by-four matrices of Sec. IV can be systematically
00 0 O obtained from the Jones matrices.

For this purpose, let us start with the three Pauli spin

. : matri f the form
The commutation relation betweelhy and J; leads to an- atrices of the fo

other generatod,, with (0 1) (o —i) (1 0)
oO,= y Oy2=| . y g3= _ .
0 0 0 0 10 i 0 0 1 5
0 0 i .
J,= (4.18 Then, the rotation generators
0O 0 O
i 1
0 -i 0O Ji=50i (5.2

These three matrices generate the three-dimensional rotation .. . .
group with the closed set of commutation relations. Satisfy the closed set of commutation relations of &ql9.

We can also construct three boost generators

[JI!‘]J]:IEIJka (419 i

KiZEO'i y (53)

If we take commutation relations ¢f; with these rotation
generators, we end up with two additional generakoysind  which satisfy the commutation relations given in E4.21).
K3, where The K; matrices alone do not form a closed set of commu-
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tation relations, their commutation relations with the rotation It is possible to construct a six-component Maxwell tensor
generators are given in E(4.22. by making combinations of two undotted and dotted spinors
The six matrices); andK; form a closed set of commu- [12]. For massless particles, the only gauge-invariant com-

tation relations, and they are like the generators of the Lorponents areiu andvv [15]. They correspond to the photons

entz group applicable to th& + 1)-dimensional Minkowski  jn the Maxwell tensor representation with positive and nega-
space. The group generated by the above six matrices {fe helicities, respectively. It is also possible to construct
called SL(2¢), consisting of all two-by-two complex matri- Maxwell-tensor fields only for a massive particle, and obtain

ces with unit determinant. massless Maxwell fields by group contractidr]
In order to construct four-vectors, we need two different

spinor representations of the Lorentz group. Let us go to the U —uu u
commutation relations for the generators given in Egs. c=| . =< )(i)—U), (5.9
(4.19, (4.21), and(4.22. These commutators are not invari- vv —uu v

ant under the sign change of the rotation generatprdut .

are invariant under the sign change of the squeeze generato¥§ereu andu are one if the spin is up, and are zero if the
K;. Thus, to each spinor representation, there is another regpin is down, whilev andv are zero and one for the spin-up
resentation with the squeeze generators with opposite sigand spin-down cases. The transformation matrix applicable
This allows us to construct another representation with théo the column vector in the above expression is the two-by-

generators: two matrix given in Eq.(5.5. What is then the transforma-
) tion matrix applicable to the row vectov( —u) from the
3 :l K __ right-hand side? It is the transpose of the matrix applicable to
i gi, K gj (5.9 . .
2 2 the column vectory, —u). We can obtain this column vec-
tor from

We call this representation the “dotted” representation.
There are therefore two different sets of Lorentz transfor-
mation matrices. If we write the most general form of the (
transformation matrix using undotted generators, it takes the
form

v

. ) , (5.10
-u
by applying to it the matrix

i ,
L=exr4——21(0i0i+|77i0i)1- (5.5 g:—igzz((l) 01). (5.11

Then the transformation matrix in the dotted representatio

becomes I:I‘his matrix also has the property

.3 goig = (o))", .12
L=ex;{——2 (Gioi—iﬂiUi)]- (5.6

231 where the superscripf means the transpose of the matrix.
The transformation matrix applicable to the column vector of
In both of the above matrices, the Hermitian conjugationgq. (5.10 is L of Eq. (5.6). Thus the matrix applicable to the
changes the direction of rotation. However, it does not, ' N i ;
L o : ow vector ¢, —u) in Eq.(5.9 is
change the direction of boosts. We can achieve this only by b ) a.59

interchanging. to L, and we shall call this the “dot” con- {g7LgT=g " LTg. (5.13
jugation.

Likewise, there are two different sets of spinors. Let usThis is precisely the Hermitian conjugate lof
useu andv for the up and down spinors for “undotted”  Let us now consider its transformation properties. The

representation. Then andv are for the dotted representa- matrix of Eq.(2.5) is like
tion. The four-vectors are then constructed A%

t+z x—iy
uu=—(x—iy), wvv=(x+iy), “lxtiy t-z ) (5.14
u=(t+2), vu=—(t—2). (5.7 where the set of variablesc(y,z,t) is transformed like a

four-vector under Lorentz transformations. Furthermore, it is
The relation between the SLE3, spinors and the four- known that the Lorentz transformation of this four-vector is

vectors has been discussed in the literaftre—13. It is ~ achieved through the formula
possible to construct the four-vector with the four Sic)2, . t
spinors[12,14). Indeed, C'=LCL, (5.19

) . . ) where the transformation matrix is that of Eq.(5.5). The
—uu=(1,0,0, vv=(1,-i,00), construction of four-vectors from the two-component spinors
_ _ is not a trivial tas11,16. The two-by-two representation of

uv=(0,0,1,9, vv,=(0,0,1-1). (5.8 Eq. (5.14) requires one more step of complication.
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We are not the first ones to suspect that the coherencyase, bothS, and S; vanish. The question then is whether
matrix behaves like a four-vector. This was done by Barakathere is a four-by-four matrix which reduces these two com-
in 1963[17]. However, Sec. V shows that we need two dif- ponents. If so, how can this matrix be augmented to the set
ferent two-by-two representations of the Lorentz group toof transformation matrices discussed in Sec. IV?
establish the connection between the Jones vectors and the
Stokes parameters in a covariant manner. The two different VIl. DECOHERENCE MATRICES

spinors are the column vectors af,{) and @,v).
This paper allows us to associate these spinors as

-

Let us go back to the four-by-four representation of Sec.
IV. For the Stokes four-vector, we can translate the two-by-
E, two attenuator Eq(3.2) applicable to the Jones vector into
), (5.19 the four-by-four matrix

Ey
coshy sinhp 0 O
and inh w0 0
sinhy cos
u\ [—Ej AOm=| o 1 ol (7.0
L= . |- (5.17
v E? 0 0 01

The symmetry between the dotted and undotted representhikewise, the phase shifter of E¢3.4) is translated into
tions is responsible for the electron-positron symmetry in the

Dirac equatiorf12]. It is interesting to note that this symme- 10 0 0
try is applicable also to the polarization vectors of Ex16) 01 O 0
.(5.17. P(0,0)= . 7.2
and Eq.(5.19 (0.9) 0 0 co®$ -—sind (7.2
V1. JONES SPINORS AND STOKES VECTORS 0 0 sinb cos
The Jones vector is a two-component vector in the conThe rotation matrix of Eq(3.5 becomes
ventional formalism. Since, however, it is like a spinor in the
Lorentz group, we call it hereafter the Jones spinor. The 1 0 o 0
Jones spinor and the Stokes four-vector are two different 0 co¥ —sind O
representations of the same Lorentz group. Why do we con- R(0)= 0 si 0 (7.3
struct two different representations? The difference is in sing  cosy
physics. 0O O 0 1

Since the four-vector contains more elements than the
two-component spinor, the Stokes vector should give more If the two transverse components lose coherence, the
information than the Jones spinor. This is translated into th&éme-averaged valueS,, and S,; become smaller. We can
invariance properties of Stokes parameters. As the fourtherefore use the matrix
scalar (2—z>—x?—y?) is invariant under Lorentz transfor-

mations, the quantity 10 0 0
01 o0 0
2_ 2 2 2 2

ST=5-51"5"S5 (6.1) 00 e2 o |’ (7.9
remains invariant under filtering processes discussed in this 0 O 0 e
paper. We shall hereafter call this quantity the “Stokes sca-
lar.” If the Stokes scalar is zero, the system is completelywhich can also be written as
coherent. This scalar quantity is positive if the system is
partially coherent. e 0 0 0

Indeed, this degree of coherence is what the Stokes vector 0 & 0

can tell while the Jones spinor cannot. If the filter system e ,A , (7.5
leaves the Stokes scalar invariant, it is a coherence- 0 e 0
preserving system. This quantity is not preserved if the filters 0O 0 0 e

cause random variations of phases. The best way to describe

this degree of coherence is to construct a Poinsphere in -~ where e " is the overall decoherence factor. For conve-
the three-dimensional space®f, S,, andS;. The radius of nience, we define the decoherence matrix as

this sphere is

N

et 0 0 0
R=(S{+S3+SH)"2 (6.2 0 & 0 0
_ _ DMV=l 5 o er o | (7.6
Then the ratidR/S; gives the degree of coherence.
This radius takes the maximum valBg when the system 0 0 0 e

is completely coherent, and it takes the minimum valu8,of
when the system is completely incoherent. In this minimumwhich is generated by
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i 0 O 0 and this expression is invariant under rotations generated by

0i o Js. Under repeated applications, the matrix algebra is simply
Q=g o0 7.9 1 O)(l 0\/S .

00 0 —j 0 e—2p 0 e—2)\ 83 ' ( . 4)

The introduction of the above matrix into the existing set of The story is quite different foS;. Here we are dealing
six generators of the Lorentz group leads to the 15 parameteavith rotations and squeeze transformations in the two-
group of O3,3) or SL(4r) [18], and this is beyond the scope dimensional space &8, andS,. In order to take advantage
of the present paper. This, however, does not prevent us fromf the mathematics of squeezed staf@$, let us write
looking for an interesting subgroup which will play the key Q;, W5, J; as

role in accommodating the decoherence matrix into the four-
by-four matrix formalism for the Stokes parameters.

It is interesting to see that this decoherence matrix com-
mutes with the attenuator of E({.1) and the phase shifter of
Eq. (7.2), but it does not commute with the rotator of Eq. These matrices form the closed set of commutation relations
(7.3). Thus the complication is reduced to the noncommuting
algebra of this rotation matrix and the decoherence matrix. [B1,B2]=—ilLs, [Bz,L3]=iBs, [L3,B1]=iBy,

As is given in Eq.(4.16), the generator oR(#) of Eq. (7.3 (7.16
takes the form

1 1
B1=5Qs, By=5Ws, Ls=

1
5 ZJs. (7.15

2

which are very familiar to us from the squeezed state of light.

00 0 O They generate the group & or SU(1,1). This is by now a
00 —i o stanqlard mathematical tool in optics. The algebraic property
Jg= (7.9 of this group is the same as the group of Lorentz transfor-
oOi 0 O mations in two spacelike dimensions and one timelike di-
00 0 O mension. This group is routinely called®)1) in the litera-

ture, and the generators satisfy the same set of commutation
If we take the commutator of this matrix with the generatorrelations as the above set for(8p[7].

of Qg, Thus the matrix algebra applicable to the two-component
. vector S is the same as that for the @p squeezed states
[J3,Q3]=2iWs3, (7.9  and/or the (2- 1)-dimensional Lorentz group. The decoher-
. ence along thé&, direction is
with
et 0
0 0 0O
_ ) o
W 0 0 i O 1
1o i o ol (7.19 The decoherence transformation along the direction which
000 O makes an anglé with the S; axis is
In order to see the physics of these matrices, let us go to [ €oStp+(sintp)cog26) (sinhp)sin(20)
the Poincaresphere of this system. In the three-dimensional (sinhp)sin(26) costp—(sintp)cog26) )
space with the three Cartesian coordinate vari&le S,, (7.18

and S;, rotations around th&; axis generated by; do not
change the first and the last components of the Stokes fouf-hus the decoherence along thedirection followed by the
vector ($,S:,S,,S;). We can thus divide this four- above transformation is

component vector into two two-component vectors: _ _ _
(cosfp%—(sml‘p)cos{ZG) (sinhp)sin(26) )

sAz(SO), SBZ(Sl). .19 (sintp)sin(26)  costp—(sintp)cog26)
Ss S
_ _ et 0
The effect of the decoherence matrix 8g will be X 0 e*) (7.19
et 0\/Sy
( 0 e (83 . (7.12  The computation of this matrix algebra leads to another de-

coherence matrix preceded by a rotation matrix
This is a squeeze transformation not affected by rotations (

coshé+(sinhé)coq 2a) (sinh&)sin(2a)
(sinhé)sin(2a) coshe— (sinhé)coq 2a)

1 0 So Cosp —sing
(o e”)(ss)’ (713 X(sin¢ cos¢)‘ (7:29

around theS; axis. If we take into account the overall factor
mentioned after Eq(7.5), the effect of decoherence &, is
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where group. It was noted that the system of attenuators is governed
) ) by the 42,1 subgroups of the Lorentz group again with
costE=(cost\)coslp + (sinth)(sinhp)cosy, three generators.
) ) We have achieved the full six-parameter Lorentz group by
I (sing)[sinhp + (tanh\)(costp —1)cosh] combining both the phase shifters and attenuators. We are
(sinkp)c039+(tanm)l+(cosrp—1)(c039)2' then led to the question of whether this full Lorentz group
has subgroups other than the input groug8)@nd Q2,1).
(tanfp)(tam)sin20 As we discuss in Appendix A, there is an interesting sub-
tang= 1+ (tanh\) (@) cosd (7.2)  group which is like the two-dimensional Euclidean group.

This is the product of our group theoretical formulation. In
The calculation leading to the above expression is welfhis section, we outline first the result of our effort on the
known from the squeezed state and the Lorentz transformalones-matrix formalisrfs]. We shall then extend this result
tion. The overall decoherence factors for Ef.17) and Eq.  t0 the case of Stokes parameters. .
(7.18 aree™*, ande™” respectively. The overall factor for ~ The Lorentz group has three boost and three rotation gen-
Eq. (7.20 is e ¢, and the net decoherence effect §is erators. As we shall note in Appendix A, we can construct a

set of generators consisting &, N;, andN,, with
g( costE+ (sinhé)cog 2 a) (sinhé)sin(2a)
e

(sinhg)sin(2a) coshe— (sinhg)cog 2a) N1=J;+Kz, Np=J—K;. 8.1
cosp —sing These generators satisfy the commutation relations
(singb cosp ) (7.22

[J3,N1]=iNy, [J3,Nz]=—iNg, [Ny,Nz]=0.
The nontrivial aspect of this calculation is the rotation matrix 8.2
in the above expression. The decoherence followed by an- . .
other decoherence does not always result in a decoherence !the case of two-by-two Jones-matrix formalism, they take
is a decoherence preceded by a rotation. It is a simple matt&p€ form
to detect this rotation once the decoherence filters are built in
laboratories. 01 0 —i
This effect of the Lorentz group has been discussed in Ni= o 0/ No= o 0/ (8.3
connection with polarization optid®,10]. In special relativ-
ity, this extra rotation is called the Thomas effect and mani-rhey indeed form a closed set of commutation relations. As
fests itself in the energy spectrum of the hydrogen &8 shown in Appendix B, these commutation relations are like
those for the two-dimensional Euclidean group consisting of
VIIl. FURTHER PHYSICAL IMPLICATIONS two translations and one rotation around the origin. This
cafroup has been studied extensively in connection with the
o space-time symmetries of massless particles, wherand
he two N generators correspond to the helicity and gauge
degrees of freedom, respectivgB0].
However, this group is relatively new in optifs,21], and
we are tempted to construct an optical filter possessing this
ymmetry. The physics od; is well known through the
phase shifter given in Eq3.4). If the angle§ is 7/2, the
phase shifter becomes a quarter-wave shifter, which we write

We have thus far reformulated the existing mathemati
devices for polarization optics in terms of the two-by-tw
and four-by-four representations of the Lorentz group. In s
doing, we have achieved a unified group theoretical formu
lation of polarization optics. The next question then is
whether this new formulation will lead to new applications
or new experiments. This question is not unlike the questio
arising from Maxwell’s formulation of electromagnetism.
After putting together various aspects of electricity and mag
netism into a single mathematical formalism, we are led S
the question of whether the formalism leads to a new phys-
ics. In the case of Maxwell's equations, the new physics led
to wireless communication and electronic industry.

The result of this paper is not as far-reaching as in Max-
well's case, but we are working within the same philosophi--l—hen\]1 andK, are the quarter-wave conjugatesXfand
cal framework as the case of Maxwell's equations. Yes, wekl’ respectively:
have unified various aspects of polarization optics into a
single group theoretical formalism. We are now interested in
new conclusions which can be derived and which can be
observed in laboratories. For this purpose, we note that the
Lorentz group has interesting subgroups. The Lorentz groufronseauently,
has six generators forming a closed set of commutation rela-
tions. We have already used this concept when we discussed N;=QN,Q~*. (8.6)

a system consisting only of phase shifters, which is governed
by O(3) or the three-dimensional rotation group with three TheN generators lead to the following transformation matri-
generators. The group (@ is a subgroup of the Lorentz ces:

e*iﬂ'/4

Q=P(0m2)=| e‘”"‘)'

(8.9

J1=Q3,Q7 % K,=-QK;Q . (8.9
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1 iu 1+v22 —v 0 —v?2
Ti(u)=exp(—iuNy)= ,
(W) =exp( Vo 1 _ —v 1 0 w
To(v)=exp(—ivNy)= 0 1 0
1 —v 2 2
Tgv)zexq—vazyz(o ) ) 8.7 viz  -v 0 1-v2
(8.10
It is clear thatT, is the quarter-wave conjugate 8. We  These expressions are the four-by-four representation of the
can now concentrate on the transformation mafrjx transformation matrices given in E@8.7) for the Jones
If T, is applied to the incoming wave of E(R.1), spinors.
Unlike the Jones-matrix formalism, the Stokes parameters
1 —v)\[Ex Ex—vEy can describe partially coherent light waves. This is the reason
= : 8.8  the above four-by-four expression is complicated. These
0o 1/\E E,

transformation matrices preserve coherence. If decoherence
is introduced, we can apply the decoherence matrices dis-
cussed in Sec. VII. It is interesting to note that the Lorentz-
group formulation of polarization optics opens up this kind
of new possibilities in physics.

This new filter superposes the component of the electric
field to thex component with an appropriate constant, but it
leaves they component invariant.

Let us examine how this is achieved. The generator
consists ofl],, which generates rotations around thaxis,
andK, which generates a squeeze along the 45° axis. Physi- IX. CONCLUDING REMARKS
cally, J, generates optical activities. Thus the new filter con- ) )
sists of a suitable combination of these two operations. In !N this paper we have shown that both the Jones-matrix
both cases, we have to take into account the overall attendormalism and the Stokes parameters can be formulated as
ation factor. This can be measured by the attenuation of the two different representations of the same Lorentz group. The

component which is not affected by the symmetry operatiorPhySiCS of the Stokes parameters can deal with the coherence
of Eq. (8.8). between the two polarization directions. It is shown also that

Is it possible to produce optical filters of this kind? Start-the decoherence effect can also be formulated within the
ing from an optically active material, we can introduce anframework of the Lorentz group or in terms of the mathemat-
asymmetry in absorption to it by either mechanical or elecCS Of squeezed states of light.
trical means. Another approach would be to pile up alter- There have been in the past many laudable attempts to
nately theJs-type andK,-type layers. In either case, it is construct a mathematical representation for polarization op-
interesting to note that the combination of these two effectdicS based on the Lorentz group7,22,23. However, the
produces a special effect predicted from the Lorentz group_Lorentz group, particularly its relevance to optics, was not

1 Ul+02
0 1

The group E2), although new in optics, has many inter- fully gppreciated until it started playing the role of the un-
esting properties having to do with our daily life. One im- derlying symmetry group for squeezed states of lighe4—
portant property is the conversion of multiplication into ad- 26}- This naturally led to a new interest in possible applica-
dition as the following matrix algebra indicates: tions of the Lorentz group in other branches of optics
including polarization optic$§9,10,23.
1 1 From the group theoretical point of view, what is different
U1 [ %) . . . . ...
( ) ) = (8.99  inthis paper is that we used in Sec. V an additional symme-
0 1/\0 1 try of the Lorentz group to understand fully the connection
between the Jones matrix and the Stokes parameters. This
Since this group deals with rotations and translations on additional symmetry was the one which connects electrons
plane, it has a great potential in navigational sciences. Howwith positrons through charge conjugation. This opens a re-
ever, we are here interested in what role this group plays isearch line which will connect symmetries of relativistic par-
the Stokes parameters. ticles with polarization optics. We can attempt to understand
In the Jones-matrix formalism, we used two-by-two ma-the symmetries of particle physics not from commutation
trices for transformations. For the Stokes parameters, weelations of group generators but from what we observe in
have to use four-by-four matrices applicable to Stokes foureptics laboratories.
vectors. The four-by-four generators of the Lorentz transfor- It is true that we used group theory as the main carrier of
mations are given in Sec. IV. They are discussed in mor@ur analysis. On the other hand, it is true also that we did not
detail in Appendix A. There, the generatdds andN, are  start our paper with commutation relations, but with what we
derived from the boost and rotation generators. From thesebserve in the real world. We concluded this paper with what

generators, we can construct transformation matrices: we can observe or we may possibly observe in the real
world.
1+u¥2 0 u —u?2
, 10 0 APPENDIX A: SUBGROUPS OF THE LORENTZ GROUP
Ti(u)=exp(—iuN;)= ,
u o1 -u Let us consider the space-time coordinatésx,§,z),
u?2 0 u 1-u??2 analogous to the Stokes parametés,6;,S,,S3). Then the
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rotation around the axis is performed by the four-by-four These four-by-four matrices satisfy the closed set of commu-
matrix tation relations given in Eq8.2).

The subgroup of the Lorentz group generated by the

1 0 0 0 above matrices governs the internal space-time symmetry of
0 co¥ —sind O massless particles, and has been extensively discussed in the
0 sing 9 0 (A1) literature[11,12,13. These expressions are new in optics.

sind  co
0 O 0 1

APPENDIX B: TWO-DIMENSIONAL EUCLIDEAN
This transformation is generated By of Eq. (4.16. The TRANSFORMATIONS
generators of rotations around th@ndy axes are also given . . .
in Eq. (4.16 and Eq.(4.18. These three generators satisfy In Sec. VIII, we discussed a set of commutation relations

the closed set of commutation relations satisfied by the generators of the two-dimensional Euclidean
group. The purpose of this Appendix is to construct the gen-
[3;,3;1=i €jJi - (A2)  erators for the group of transformations on a flat plane. There

are translations and rotations.
This set of commutation relations is for the three- Let us consider here a two-dimensional plane and use the

dimensional rotation group. Xy coordinate system. Then, defined as
The Lorentz boost along theaxis takes the form
coshy 0 0 sinhy ( d ﬁ]
L=—i1{X———y— Bl
0 10 0 z ay Y ax (B1)
0 0 1 o |’ (A3
sinhp 0 0 coshy will generate rotations around the origin. The translation

generators are
which is generated bi; of Eq. (4.20. Boosts along the
andy axes are generated l§; andK, given in Eq.(4.17)
and Eq.(4.20, respectively. These boost generators satisfy 9 )
the commutation relations Py=—i x’ Py=—i - (B2)
[Ji Kil=ienKy, [Ki Kj]=—iepde.  (Ad)

Indeed, the three rotation generators and the three boo-gth ese generators satisfy the commutation relations
generators satisfy the closed set of commutation relations
given in Eq.(A2) and Eq.(A4). The four-by-four transfor- _ _ _
mation matrices generated by these generators are directly (Lo Pd=iPy, [La Pyl= =Py [PGPy] 0.(83)
applicable to the space-time four-vectoy,y,z) and also to
the Stokes four-vectors;,S;,S,,S3).

We can now construct a subset of the generators consisthese commutation relations are like those given in Eq.
ing of J3 of Eq. (4.16, andN; andN, defined in Eq(8.1).  (8.2. They become identical if,, P,, andP, are replaced

Thus the generatorld; andN, take the form by J1, N,, andNs, respectively.
This group is not discussed often in physics, but is inti-
0 0i O 0 —-i 00 mately related to our daily life. When we drive on the streets,
0 0 0 -i 0 0 i we make translations and rotations, and thus make transfor-
N,=| . |, N,= ) mations of this E2) group. In addition, this group reproduces
0 0 —i 0 0 0 the internal internal space-time symmetry of massless par-
0 0i O 0 -i 0 ticles [27]. This aspect of the @) group has been exten-
(A5)  sively discussed in the literatufé1,12,15,20
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